


SM Transparency Catalog ▶ Polycor ▶ Granite Facades, Cladding & Walls


POLYCOR

Granite Facades, Cladding & Walls

Originating at the Polycor quarries and through production, granites are manufactured to the system's specifications from ultra-thin profiles up to full thickness dimensional elements complimentaing a wide range of facade structures. Granite is an inherently nonemitting source of VOCs and its durability allows it to perform impeccably in commercial & residential applications, interior or exterior.

Performance dashboard

Features & functionality

Covers the wide selection of Polycor's heritage granites and any surface finishes available

Has an unmatched durability and no need for periodic cleaning

Includes ultra-thin panels and veneer series: BERKSHIRE®, ROCKFORD ESTATE BLEND® & **VANDERBILT CLASSIC®**

Installation methods include adhered or anchored

Visit Polycor for more product information

Granites Building facades Veneer series

Environment & materials

Polycor's commitment to carbon neutrality translates into:

Reduction of product's GWP

Reduction of product's energy intensity

Polycor's ownship of the chain of custody from quarries to plants ensures:

No child labor and forced labor

Materials remain 100% natural, free from chemicals or dyes

Certifications & rating systems:

Environmental Product Declaration (EPD)

Natural Stone Sustainability Standard (ANSI 373)

Health Product Declaration (HPD)

MasterFormat® 04 41, 04 42, 04 43, 04 43 16,

Granite Facades, Cladding & Walls Guide

For spec help, contact us or call 418.692.4695

See LCA, interpretation & rating systems

SM Transparency Report (EPD)™

VERIFICATION

3rd-party reviewed

LCA Ø

verified, according to ISO 14025:2006, by Jack Geibig,

This environmental product

3rd-party verified

Validity: 2023/01/31 - 2028/01/30 Decl #: POL- 20230131 - 006

Transparency Report (EPD)

declaration (EPD) was externally 21930:2017, UL Part A, and ISO President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundaries

North America; Cradle to grave

Functional unit / reference service life: 1 m² of installed stone cladding; 75 years

LCIA methodology: TRACI 2.1

LCA software; LCI database

SimaPro Developer 9.4 Ecolnvent 3.8, US-EI 2.2

LCA conducted by: Sustainable Minds

Public LCA:

Life Cycle Assessment of Natural Stone Cladding for Polycor

Polycor Inc.

76 rue Saint-Paul, Suite 100 Quebec City (Quebec), Canada G1K 3V9 418-692-4695

Contact us

Granite Facades, Cladding & Walls

LCA results & interpretation

Life cycle assessment

Scope and summary

Product description

○ Cradle to gate ○ Cradle to gate with options **♡** Cradle to grave

Stone cladding is applied to a building exterior to separate it from the natural

environment and provide an outer layer to the building. It not only provides a control to weather elements but also a durable, aesthetically pleasing building appearance. Granite cladding is used in commercial, residential, and public sector buildings. The results in this study are presented for cladding with a thickness of

42.11mm. However, this study applies to a range of thicknesses and can be applied using the scaling factors on Page 4. **Functional unit**

The functional unit is **one square meter** of installed natural stone cladding

for a service life of 75 years. No replacement will be needed during the

entire Estimated service life of buildings (ESL). The product system in this study also includes the ancillary materials used in the installation of the product – mortar and masonry connectors. Materials needed to meet functional unit are: Natural stone - 89.77 kg per m² Mortar - 4.88 kg per m²

Water - 1.00 liter per m² Detailed information for functional unit properties is shown on Page 4. Manufacturing data

Masonry connectors - 0.62 kg per m²

quarries and processing facilities covering a period of two years: January

2020 to December 2021. Data for granite quarry operations were collected from 13 quarry sites across North America and grouped as American granite

quarries and Canadian granite quarries. After granite is extracted from the quarry, it goes to a processing facility. Stone processor operations data were collected from eight Polycor granite processing sites across North America. American granite plants: three manufacturing facilities respectively in

The data for all granite stone products were collected from Polycor's granite

Data were collected from quarries and producers mainly operating in North America (mainly the US and Canada). As such, the geographical coverage

Canadian granite plants: five manufacturing facilities in Quebec.

- for this study is based on North American conditions. Default installation, packaging, and disposal scenarios
- may be necessary to accommodate design. The amount of ancillary materials used depend largely on the building design, but most stone cladding installations incorporate anchors and mortar, used either as masonry bed or to fill veneer cavities. Wood and cardboard used as

packaging to safely deliver the stone to the site is then transported to be

Cladding is delivered at the job site ready for installation, where minor cuts

either landfilled or recycled, following US EPA's end of life scenarios for containers and packaging. At the end of its useful life, the cladding is removed and transported to be either landfilled (31.5%) or recycled (68.5%).

North Carolina, New Hampshire, and Maine.

Cement mortar used during the installation (A5) of granite cladding also generates significant environmental impacts in the overall life cycle impacts of granite cladding. Under normal operating conditions, granite cladding will not require any cleaning. Due to the nature of natural stone, it is anticipated that the stone cladding products will last for the lifetime of the building. The reference service life (RSL) thus meets an ESL of 75 years, and cladding will need no replacements during its service life. The use stage is not relevant since stone cladding does not require any repair, replacement, or refurbishment during its entire service life. End-of-life stages have lower

5.00E+00

4.00E+00

Other life cycle stages

contributions to the total life cycle impacts. Material composition greater than 1% by weight **MATERIAL** % WEIGHT 100% Granite Total impacts by life cycle stages [mPts/per func unit]

LIFE CYCLE STAGE

transport

Manufacturing

Raw material supply and

MPTS/FUNC. UNIT

A1 Quarry

operations

processors

A1-A2 QUARRY

0

OPERATIONS AND

TRANSPORT

9.70E-02

7.40E-03

1.03E+01

5.05E-07

46.1%

A2 Transport to

1.44E+00

2.72E+00

Information modules: Included (X) | Excluded*

All life cycle stages

What's causing the greatest impacts

dominates the results for all impact categories. This study assessed a

use stage.

cladding.

Sensitivity analysis

multitude of inventory and environmental indicators. In addition to the six major impact categories (global warming potential, ozone depletion, acidification, smog, eutrophication, and fossil fuel depletion), additional impact categories have also been included. These six impact categories are globally deemed mature enough to be included in Type III environmental declarations. Other categories are being developed and defined, and LCA should continue making advances in their development. However, the EPD users shall not use additional measures for comparative purposes. LCIA results are relative expressions and do not predict impacts on category endpoints, the exceeding of thresholds, safety margins or risks. Overall results are consistent with expectations for stone cladding's life

For the natural stone cladding product, the cradle-to-gate stage (A1-A3)

The primary finding, across the environmental indicators, was that cradleto-gate stage (A1-A3) dominates the impacts due to the energy consumed at the quarries and processing plants. The processor operations (A3) stage

cycles, with most of the impacts being generated during cradle-to-gate

stages, as cladding is not associated with energy consumption during its

is the highest contributor to most of the impact categories, followed by the quarry operations (A1). The cradle-to-gate stage (A1-A3) contributes over 55% of the total impacts in all impact categories. The transportation of stone from quarries to processing plants, transportation of cladding from processing plants to the installation sites, and use of mortar during installation also generate significant impacts in the overall life cycle impacts of granite cladding. Quarry operations and transport to processors Impacts generated at granite quarries (A1) are mainly due to the use of grid electricity and fuels in the quarries. Other material inputs generate

considerable impacts in numerous impact categories. Processor operations and transport to building sites Manufacturing operations at processing plants (A3) is the highest impact contributor. It makes up the greatest share of night out of ten impact categories. Energy consumed at processors (both electricity and fuels) is responsible for the majority of impacts, while other material inputs

have an insignificant contribution. The transportation of stone cladding

transportation of granite from quarries to processing plants also generates

little impact in comparison to the electricity and fuel consumed. The

manufactured in processor plants to the building sites also makes a significant impact on the overall life cycle impacts of natural stone

operations specific to a square meter of granite cladding was assumed to match the average stone processing for square meter of granite. A sensitivity analysis was performed to check the robustness of the results when the energy consumed during processing is varied by +/-20% from the estimate used in this study. The resulting variation in total life cycle impacts of granite cladding is ~10% for potential CO₂ equivalent emissions and ~8% for fossil fuel depletion. Other impact categories also follow a similar trend. Natural stone is one of the lowest embodied carbon construction

materials. Although we are proud of this intrinsic quality, we want to

Beyond embodied carbon, Polycor only uses rainwater for stone

extraction, recycles it, and also uses dry sawing technology in a

growing number of quarry operations. In quarrying, production,

make sure that we'll never stop improving it.

Based on the recommendation provided by Polycor, impacts for processor

installation and maintenance, natural stone lowers water use throughout its life cycle. Polycor is the leader within the Natural Stone Sustainability Standard (ANSI 373) with 25% of our sites certified. This standard examines and

verifies numerous areas of natural stone production, effectively

improving the baseline for the environmental and social performance of natural stone in alignment with green building practices.

END-OF-LIFE

C2 Waste

Transport

C1-C4 END-OF-LIFE

5.25E-03

6.78E-04

1.51E+00

2.99E-07

1.6 %

½product

1 product

1 product

1.5 product

.5 points

.75 points

1 point

C1 Deconstruction

Stages B1-B7, C1, and C3 though included, have no associated activities.

(MND)

*Module D is excluded.				B3 Repair	C3 Waste processing
				B4 Replacement	C4 Disposal
				B5 Refurbishment	
				B6 Operational energy use	
				B7 Operational water use	
					の行うなない。またりには
SM Single Score Learn about SM Single Scor	e results				
SM Single Score Learn about SM Single Score Impacts of 1 square meter of installed natural stone cladding	e results 1.44E+00 mPts	2.72E+00 mPts	3.31E-01 mPts	0 mPts	6.46E-02 mPts

PROCESSOR

OPERATIONS

1.00E-01

1.44E-02

2.09E+01

9.47E-07

MANUFACTURING

A3 Processor

operations

CONSTRUCTION

A4 Stone transport

to building sites

A5 Installation

A4-A5 STONE TRANSPORT TO BUILDING SITES

2.77E-02

2.37E-03

7.94E+00

8.07E-07

5.8 %

B1-B7

0

0

0

0

0 %

B1 Use

B2 Maintenance

0 **Global warming** kg CO₂ eq (Embodied Carbon) kg CFC-11 eq Ozone depletion

Human health damage

Unit

Unit

CTU

kg SO₂ eq

kg N eq

TRACI v2.1 results per functional unit

LIFE CYCLE STAGE

Impact category

Acidification

Eutrophication

Impact category

Ecotoxicity

upon request)

services"

Ecological damage

Fossil fuel depletion	MJ. LHV	2	2.01F+01	2.36F+01	9.99F+00	0	43.08F+00
Impact category	Unit						
Additional environm	ental informat	ion					
Smog	kg O ₃ eq	?	2.97E+00	2.24E+00	5.30E-01	0	1.41E-01
Respiratory effects	kg PM _{2.5} eq	?	5.53E-03	1.10E-02	2.15E-03	0	3.82E-04
Non-carcinogenics	CTU _h	?	1.19E-06	1.75E-06	4.53E-07	0	5.45E-08
Carcinogenics	CTU _h	?	3.84E-07	9.35E-07	2.81E-08	0	6.17E-10

46.4 %

See the additional content required by the ULE PCR Part B for cladding product systems on page 4 of the Transparency Report PDF.

References	Rating systems
LCA Background Report Polycor Natural Stone Cladding LCA Background Report (public version), Polycor 2023. SimaPro Analyst 9.4, ecoinvent 3.4 database.	The intent is to reward project teams for selecting products from manufacturers who have verified improved life-cycle environmental performance.
PCRs	LEED BD+C: New Construction v4 - LEED v4

Requirements v3.2 December, 2018. Technical Advisory Panel members reviewed and provided feedback on content written by UL Environment and USGBC. Past and

ISO 21930:2017 serves as the core PCR along UL Part A.

Gumpertz & Heger). UL Environment General Program Instructions v2.5, March 2021 (available

ISO 14025, "Sustainability in buildings and civil engineering works -- Core rules for environmental product declarations of construction products and

ULE PCR Part A: Life Cycle Assessment Calculation Rules and Report

present members of the Technical Advisory Panel are listed in the PCR.

ULE PCR Part B: Cladding Product Systems EPD requirements v2.0

April 2021. PCR review conducted by: Jim Mellentine (Thrive ESG); Christopher White (NIST), Ph.D.; and Philip S. Moser, P.E.(MA) (Simpson

厂 **Download PDF** SM Transparency Report, which includes the additional EPD content required by the UL Environment PCR.

SM Transparency Reports (TR) are ISO 14025 Type III environmental declarations (EPD) that enable purchasers and users to compare the potential environmental performance of products

on a life cycle basis. Environmental declarations from different programs (ISO 14025) may not be comparable. Comparison of the environmental performance of Cladding Product Systems using EPD information shall be based on the product's use and impacts at the building level, and therefore EPDs may not be used for comparability purposes when not considering the building energy use phase. Full conformance with the PCR for stone cladding allows EPD comparability standards, use the same sub-category PCR, and use equivalent scenarios with respect to construction works. However, variations and deviations are possible.

only when all stages of a life cycle have been considered, when they comply with all referenced Example of variations: Different LCA software and background LCI datasets may lead to differences results for upstream or downstream of the life cycle stages declared SM Transparency Report (EPD)™

BREEAM New Construction 2018 Mat 02 - Environmental impacts from construction products

Product-specific EPD

Environmental Product Declarations (EPD) ○ Industry--average EPD Multi-product specific EPD

Building product disclosure and optimization

LEED BD+C: New Construction | v4.1 - LEED v4.1

Building product disclosure and optimization

Environmental product declarations

Environmental product declarations

Industry-wide (generic) EPD

✓ Product-specific Type III EPD

() Industry-wide (generic) EPD

Product-specific Type III EPD

VERIFICATION

3rd-party reviewed	•
Transparency R	eport (EPD)
3rd-party verified	Ø
Validity: 2023/01/31 – 202	28/01/30

Decl #: POL- 20230131 - 006

This environmental product declaration (EPD) was externally erified, according to ISO 21930:2017, UL Part A, and ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road,

ww.ecoform.co	m
65) 850-1883	

ecoform

© 2022 | The SM Transparency Report [EPD]™ Program is operated by Sustainable Minds® (www.sustainableminds.com) | Privacy policy

(8

Knoxville, TN 37932

Reference PCR

SUMMARY

Public LCA:

Regions; system boundaries North America; Cradle to grave

Functional unit / reference service life: 1 m² of installed stone cladding; 75 years LCIA methodology: TRACI 2.1

LCA conducted by: Sustainable Minds

LCA software; LCI database SimaPro Developer 9.4 Ecolnvent 3.8. US-El 2.2

76 rue Saint-Paul, Suite 100

Quebec City (Quebec), Canada G1K 3V9

Polycor Inc.

418-692-4695

Contact us

How we make it greener

Granite Facades, Cladding & Walls

See LCA results by life cycle stage

Collapse all

RAW MATERIALS ACQUISITION

Natural stone quarrying process has high yields and little excess material because the stone is close to surface. It's different from metal mining, where large amounts of earth must be removed to extract very little quantities. Also, underground quarrying, which has been perfected for generations at our Eureka Quarry, reduces land use and is a practice that Polycor wishes to extend to several quarries.

In addition, few consumables are needed to extract natural stone. Contrast that with other building materials, Polycor specifically focuses on sourcing the highest grades of natural stone so that, for instance, a black granite stone, doesn't need dyes to achieve its rich color.

From the bedrock to the point of sale, Polycor maintains an unbroken ownership of the supply chain allowing it to maintain standards of quality and practice.

2 LCA RESULTS & INTERPRETATION 3 HOW WE MAKE IT GREENER

TRANSPORTATION

Using stone from local sources is the single biggest opportunity to reduce its embodied carbon. Since natural stone is a heavy material, the environmental impacts for transporting it end up being one of its most significant source of carbon. Natural stone is sourced world-wide and each deposit has unique aesthetic and performance characteristics so this is not always avoidable. Be sure to understand the distances between the quarry, the processing facility, sometimes the distribution centers but also the transportation mode. In most of Polycor's operations, the quarry is within miles of the processing facility.

MANUFACTURING

Manufacturing natural stone is so simple that you can sumarize it by a single action, cutting. Cutting large piece into smaller pieces ending in a finished product. Also, the beauty of natural stone products is that there is no chemical mixed within our products. Therefore, they are inherently a non-emitting source of VOCs.

Recycling water is reused several times into the manufacturing process and is compulsory to achieve ANSI 373 Standard.

There are a large variety of sizes and finishes that are commonly used for natural stone. Design teams can help reducing energy consumption in the following ways: Usage of low embodied carbon finishes such as water jet, 3D analysis to loose as few stone as possible troughout it's transformation, accepting the natural variation in the material so there is more usable material.

OTHER (USE, END OF LIFE)

Whether you think of the Egyptian pyramids, the Colosseum of Rome, the cathedrals of the European capitals or closer to us; the famous Empire State building; natural stone is the most durable, classic and timeless building material on Earth. With 100+ years of durability, natural stone lasts longer than other building construction material and projects that use natural stone require less maintenance.

Since we don't use any chemicals, natural stone products as well as excess process materials throughout the extraction and transformation phases can be reused or recycled into gravel for roads, landscaping products and even furniture and jewelry. In short, natural stone can be reused and recycled multiple times during its life cycle; the only limit is your imagination!

Nevertheless, even if natural stone ends up in a construction landfill, there will be no toxic chemicals seeping into the earth as the material degrades. It simply returns to the earth, cradle to cradle.

SM Transparency Report (EPD)™

VERIFICATION

3rd-party reviewed

LCA

Transparency Report (EPD)

3rd-party verified

Validity: 2023/01/31 - 2028/01/30 Decl #: POL- 20230131 - 006

This environmental product declaration (EPD) was externally verified, according to ISO 21930:2017, UL Part A, and ISO 14025:2006, by Jack Geibig, President, Ecoform.

Ecoform, LLC 11903 Black Road, Knoxville, TN 37932

(865) 850-1883

SUMMARY

Reference PCR

Regions; system boundaries

North America; Cradle to grave Functional unit / reference service life:

1 m² of installed stone cladding; 75 years

LCIA methodology: TRACI 2.1 LCA software; LCI database

SimaPro Developer 9.4 Ecolnvent 3.8, US-El 2.2

LCA conducted by: Sustainable Minds

Contact us

Polycor Inc.

418-692-4695

76 rue Saint-Paul, Suite 100

Quebec City (Quebec), Canada G1K 3V9

Data

Background This product-specific declaration was created by collecting product data for one square meter (m²) of installed granite cladding. Granite cladding is the installation of exterior cladding to a building that separates it from the natural environment and provides an outer layer to the building. Material and production inputs from each quarry and processor site were used to calculate weighted averages of those inputs based on the production share of the site.

Allocation The allocation methods used were examined according to the updated allocation rules in ISO 21930:2017. Quarry inputs and outputs were divided evenly among the quarried granite by mass, and no co-product allocation was needed. Similarly, no co-product allocation was required for processor operations as well since processing data was collected from Polycor's processing plants specific to granite. The processor inputs and outputs were divided evenly among the processed stone by area.

primary resource (energy) usage, 1% nonrenewable primary resource (energy) usage, 1% of the total mass input of that unit process, and 1% of environmental impacts. The total of neglected input flows per module does not exceed 5% of energy usage, mass, and environmental impacts. No known flows are deliberately excluded from this declaration. Biogenic carbon is included in reported results.

Cut-off criteria for the inclusion of mass and energy flows are 1% of renewable

typical operations of Polycor's granite quarry and processors across North America. Inventory data is considered to have a good precision and provide a representative depiction of the industry average. Data is also considered to be complete as no know flows are deliberately excluded from this analysis other than those defined to be outside of the system boundary. Proxy and generic datasets have been used for some materials and processes, but are considered to be sufficiently representative. **Quarry and Manufacturing Plant information**

Quality Primary data was collected for a time period of two years, which represents

Data Group	Quarry location(s)		
American Granite Quarries	American Black Quarry, Elverson, PA Barre Gray Quarry, Graniteville, VT Bethel White Quarry, Bethel, VT Concord Gray Quarry, Concord, NH Mount Airy Quarry, Mount Airy, NC		
Canadian Granite Quarries	Caledonia 4 Quarry, Quebec Cambrian Black Quarry, Quebec Kodiak Brown Quarry Laurentian Rose Quarry, Quebec Picasso Quarry, Quebec Saint Henry Black Quarry, Quebec Saint Sebastien Quarry, Quebec Stanstead ROA Quarry, Quebec		
Data Group	Manufacturing Plant location(s)		
American Granite Plants	Mount Airy Plant, Mount Airy, NC Concord Plant, Concord, NH Jay White Plant, Jay, ME		
Canadian Granite Plants	Beaudoin Plant, Quebec Precision Plant, Quebec Rivière-à-Pierre Plant, Quebec Saint Sebastien Slab Plant, Quebec Saint Sebastien Tile Plant, Quebec		

Parameter	Unit	Test Method	Value	
CSI Masterformat classification	04 42 00			
Stone type	Granite			
Stone grades	All grades			
Product weight	kg		89.77	
Thickness to achieve functional unit	m		0.04211	
Density	kg/m ³		2,654	
Length	m		1.52	
Width	m		0.66	
Flexural strength	Мра	C880	8.27	
Modulus of rupture	MPa	C99	10.34	
Thermal conductivity (k-value)	W/mK	ASTM C518	1.73	
Thermal resistance (R-value)	m.K/W	ASTM C518	0.56	
Compressive strength	MPa	C170	131.00	
Water vapor permeance	metric perms	Not relevant		
Liquid water absorption	% of dry wt	C97	0.1-1.0	
Airborne sound reduction	dB	Not relevant		
Sound absorption coefficient	%	Not relevant		
Calcination CO ₂ emission	ns			

Mortar includes cement calcination ${\rm CO_2}$ emissions which is calculated &

Functional unit properties

reported separately using a carbon intensity factor of 886 CO₂ per ton of cement (Source: U.S. Cement Industry Carbon Intensities (2019)). **Production flow chart** Stone Quarrying — Use of

kg CFC-11 eq 1.64E-07

8.55E+00

kg CO₂ eq

Although calcination and carbonation is not relevant to granite cladding

products, calcination occurs during installation stage due to the use of mortar.

Stone transport from quarries to

Ozone depletion

Global warming

processing facilities

blocks go through block saws, saw slabs, bridge saws etc. stone blocks processed to stone flooring and paving products.

Stone Processing — Stone

explosives, power drills,

power saws, diamond belts

etc. — stone blocks extracted from natural rock layers.

Scenarios and additional technical information

Transport from Quarry to Processor (A2)

Based on the primary data, the transport distance between Polycor's granite quarry and processing facilities varies, & the weighted distance is 83 km. For the quarries who had no primary information, a conservative stone transportation distance of 100 km via truck & trailer was assumed.

Transport to the building site (A4)

Parameter	Value	Unit
Vehicle type	Lorry, 16-32 to	on
Fuel type	Diesel	
Liters of fuel	0.41	l/100 km
Distance from manufacturer to installation site	199.5	km (weighted avg)
Capacity utilization (mass based)	100	%
Gross density of products transported	2,654	kg/m ³
Capacity utilization volume factor	1	

Installation into the building (A5)

processing plants and is typically delivered to the job site ready for installation, minor changes may be necessary to accommodate design revisions. For consistency with the industry-average LCA $\,$ an installation scrap rate of 5% is assumed. Installation scrap assumed

Even though cladding fabrication (cutting and finishing to required size) is done at the

Ancillary materials -		
Mortar	4.88	kg
Masonry connectors	0.62	
Net freshwater consumption	1	L
Electricity consumption	0	kWh
Product loss per functional unit (scrap)	4.16	kg
Waste materials at the construction site before waste processing (stone scrap and packaging waste)	7.36	kg
Output materials resulting from on-site waste processing	0	kg
Mass of packaging waste specified by type		
Cardboard Wood	0.009 3.29	kg
Biogenic carbon contained in packaging	6.05	kg CO ₂
Direct emissions to ambient air, soil and water	0	kg
VOC emissions	0	μg/m ³

Maintenance process information

Maintenance scenario parameters (B1-B7)

Maintenance cycle	None			
Maintenance process information	None			
Energy input during maintenance	Not necessary			
Reference service life information				
Reference Service Life (RSL)	75	years		

Cleaning the surface of granite cladding

years

Estimated Service life (ESL) 75

Design application parameters	Outdoor applications
Outdoor environment	Installation as recommended by manufacturer.
Indoor environment	Not relevant
Use conditions	All conditions
End of life (C1-C4)	
Assumptions for The pro	oduct is dismantled and removed from the building

scenario development	manually. It is transported to a local facility where it requires no further processing before final disposition.			
Collection process	Collected separately	0	kg	
	Collected with mixed construction waste	104.27	kg	
Disposal	Landfill (31.5%)	32.85	kg	
Recovery	Reuse	0	kg	
	Recycling (68.5%)	71.42	kg	
Waste transport		100	km	
Removals of biogenic carbon (excluding packaging)		0	kg CO ₂	
Hazardous waste				

according to the Resource Conservation and Recovery Act (RCRA), Subtitle C. **Scaling factors**

The results presented below have been reported to 1.658 inches (42.11 mm) for granite cladding. However, they may be scaled according to different thicknesses as desired using scaling factors. To calculate the results for additional thickness options, simply

Polycor's granite cladding do not contain substances that are identified as hazardous

multiply the results by the corresponding conversion factor presented here:

other facilities.

6.88E-07

3.45E+00

3 ^{5/8}" 1.658" **Thickness** (25.40 mm) (50.80 mm) (92.07 mm) (42.11 mm) Conversion 1 0.603 1.206 2.186 **Factor**

Major system boundary exclusions	
Capital goods and infrastructure,	
Maintenance and operation of support equipment;	

• Manufacture and transport of packaging materials not associated with final product; • Human labor and employee transport;

- Building operational energy and water use not associated with final product.
- Major assumptions and limitations

production share of cladding by stone types among the participant processors only.

• Quarrying & processing inventory specific to cladding are generated using the

- Energy consumed for cladding stone processing is assumed to be similar to the average energy processing of all stone products.
- A conservative stone transport distance of 100 km is taken for stone transport from quarries to processors for the quarries with no primary transport info.

0

2.85E-07

1.43E+00

1.38E-08

8.07E-02

1.19E-07

4.49E+00

2.56E-06

4.06E+01

• Gaps in materials data for participant manufacturers are filled with an average from

Unit **A**1 **A2** А3 Α4 **A5** B1-B7 C2 Parameter C4 **Total** LCIA results (per m² of granite cladding)

9.47E-07

2.09E+01

3.41E-07

1.71E+00

LCIA results, resource use, output & waste flows, and carbon emissions & removals per m² of granite cladding

	_									
Smog	kg O ₃ eq	2.83E+00	1.41E-01	2.24E+00	2.84E-01	2.46E-01	0	1.17E-01	2.35E-02	5.88E+00
Acidification	kg SO ₂ eq	9.16E-02	5.36E-03	1.00E-01	1.08E-02	1.69E-02	0	4.47E-03	7.79E-04	2.30E-01
Eutrophication	kg N eq	6.68E-03	7.20E-04	1.44E-02	1.45E-03	9.23E-04	0	6.02E-04	7.62E-05	2.49E-02
Carcinogenics	CTUh	3.83E-07	7.11E-10	9.35E-07	1.43E-09	2.67E-08	0	5.93E-10	2.36E-11	1.35E-06
Non-carcinogenics	CTUh	1.13E-06	6.42E-08	1.75E-06	1.30E-07	3.23E-07	0	5.36E-08	9.36E-10	3.45E-06
Respiratory effects	kg PM _{2.5} eq	5.19E-03	3.36E-04	1.10E-02	6.78E-04	1.47E-03	0	2.81E-04	1.01E-04	1.91E-02
Ecotoxicity	CTUe	2.10E+01	9.31E-01	2.21E+01	1.88E+00	9.27E-01	0	7.78E-01	7.67E-03	4.76E+01
Fossil fuel depletion	MJ surplus	1.66E+01	3.48E+00	2.36E+01	7.02E+00	2.97E+00	0	2.91E+00	1.71E-01	5.68E+01
Energy consumption, energy type, and material resources (per m ² of granite cladding)										
Renewable primary energy used as energy carrier (fuel)	MJ, LHV	5.95E+00	3.56E-02	1.02E+02	7.19E-02	1.96E+00	0	2.98E-02	2.33E-03	1.10E+02
Renewable primary resources with energy content used as material	MJ, LHV	6.83E-01	0	9.10E+01	0	0	0	0	0	9.17E+01
Total use of renewable primary resources with energy content	MJ, LHV	6.64E+00	3.56E-02	1.93E+02	7.19E-02	1.96E+00	0	2.98E-02	2.33E-03	2.02E+02
Non-renewable primary resources used as an energy carrier (fuel)	MJ, LHV	1.30E+02	2.29E+01	3.61E+02	4.63E+01	4.18E+01	0	1.91E+01	1.13E+00	6.22E+02
Non-renewable primary resources with energy content used as material	MJ, LHV	6.34E-01	0	5.81E+00	0	0	0	0	0	6.44E+00
Total use of non-renewable primary resources with energy content	MJ, LHV	1.30E+02	2.29E+01	3.67E+02	4.63E+01	4.18E+01	0	1.91E+01	1.13E+00	6.28E+02
Secondary materials	kg	0	0	0	0	0	0	0	0	0
Renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0	0	0
Non-renewable secondary fuels	MJ, LHV	0	0	0	0	0	0	0	0	0

0

9.21E+00

0.00E+00

5.78E-01

2.57E-01

1.20E-01

1.86E-06

0

0

0

0

3.76E-06

2.43E-01

0

3.12E+00

2.50E+00

3.17E-04

6.48E-07

0

0

0

1.00E-01

1.56E-06

1.63E-08

0

7.81E-03

3.28E+01

1.21E-07

1.28E-09

0

9.07E+01

8.00E-03

3.61E+01

2.65E-01

2.98E-05

Intermediate- and low-level radioactive waste, conditioned, to 2.84E-06 1.96E-08 2.63E-05 3.94E-08 kg

MJ, LHV

Output flows and waste category indicators (per m² of granite cladding)

7.79E+01

8.00E-03

1.49E-01

7.98E-03

 m^3

kg

kg

kg

Recovered energy

Use of net freshwater resources

Hazardous waste disposed

Non-hazardous waste disposed

High-level radioactive waste,

conditioned, to final repository

final repository	3									
Components for re-use	kg	0	0	0	0	0	0	0	0	0
Materials for recycling	kg	4.69E+02	0	3.49E+01	0	4.86E+00	0	0	7.14E+01	5.80E+02
Materials for energy recovery	kg	0	0	0	0	0	0	0	0	0
Exported energy (EE)	MJ, LHV	0	0	0	0	0	0	0	0	0
Carbon emissions and removals (per m ² of granite cladding)										
Biogenic Carbon Removal from Product	kg CO ₂	0	0	0	0	0	0	0	0	0
Biogenic Carbon Emission from Product	kg CO ₂	0	0	0	0	0	0	0	0	0

Biogenic Carbon Removal from Packaging	kg CO ₂	0	0	6.05E+00	0	3.02E-01	0	0	0	6.35E+02
Biogenic Carbon Emission from Packaging	kg CO ₂	0	0	0	0	4.59E+00	0	0	0	4.60E+00
Biogenic Carbon Emission from Combustion of Waste from Renewable Sources Used in Production Processes	kg CO ₂	0	0	0	0	0	0	0	0	0
Calcination Carbon Emissions	kg CO ₂	0	0	0	0	1.21E+00	0	0	0	1.21E+00
Carbonation Carbon Removals	kg CO ₂	0	0	0	0	0	0	0	0	0
Carbon Emissions from Combustion of Waste from Non-Renewable Sources used in Production Processes	kg CO ₂	0	0	0	0	0	0	0	0	0